If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+14p+40=6
We move all terms to the left:
p^2+14p+40-(6)=0
We add all the numbers together, and all the variables
p^2+14p+34=0
a = 1; b = 14; c = +34;
Δ = b2-4ac
Δ = 142-4·1·34
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{15}}{2*1}=\frac{-14-2\sqrt{15}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{15}}{2*1}=\frac{-14+2\sqrt{15}}{2} $
| 9/11=j+(-2/11) | | -10.7g=-13.68-12.6g | | 4x-36+x+24=90 | | 7-9x=-3(3x+2) | | -10+13m-17=11+11m | | 2z+2=2z+3-2 | | 7(2x+3)−12x=3x+17 | | 4x=2.8(x+3) | | 5x+4x−7=47 | | 4(5x+17)=-8 | | -4(7x-5)+3=-28+23 | | 4x-36=x+24 | | 14/(7x+3)=7 | | -17q+12=-12-20q | | 54+11y-1=180 | | -11g-14=-9g | | -21=2(w+2)-7w | | n+7=12+2n | | 4(x+3)=x+3(x+1) | | 4x+67x+15=120 | | 398+n0-15=24 | | 4x+67x+15=12£ | | -3(v-5)=-8v-10 | | -10+6t=4+8t | | -55=w/5 | | 19=-6x+1 | | 19x+3+x=180 | | x/6+11=3 | | 55=11x-4(2+3x)-14 | | -7x-13=-9x-3 | | 56=4(8-2x) | | 2b-13=-9b |